0=-16t^2+1040

Simple and best practice solution for 0=-16t^2+1040 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=-16t^2+1040 equation:



0=-16t^2+1040
We move all terms to the left:
0-(-16t^2+1040)=0
We add all the numbers together, and all the variables
-(-16t^2+1040)=0
We get rid of parentheses
16t^2-1040=0
a = 16; b = 0; c = -1040;
Δ = b2-4ac
Δ = 02-4·16·(-1040)
Δ = 66560
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{66560}=\sqrt{1024*65}=\sqrt{1024}*\sqrt{65}=32\sqrt{65}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-32\sqrt{65}}{2*16}=\frac{0-32\sqrt{65}}{32} =-\frac{32\sqrt{65}}{32} =-\sqrt{65} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+32\sqrt{65}}{2*16}=\frac{0+32\sqrt{65}}{32} =\frac{32\sqrt{65}}{32} =\sqrt{65} $

See similar equations:

| x/4=6/16 | | -m=-17 | | k•1/2=5/12 | | 14=3+x/2 | | 32=n/8–24 | | 1/5f+2=5 | | -4=-2f | | -2x-9=-3x-7 | | 1/4z+1=7 | | 2(21+12x)=3x | | 8(5g+5-2)=8(5g+5-2) | | 4x+1-3-3x=1 | | 3z=z=9 | | 8x-90=3 | | 120x+45=15 | | 3/4x7=22 | | 30k+70k=20k=90 | | −1=−3x+2x | | 6t+28=184 | | z-3.5=-2.1 | | –8+5r=6r | | -1.2x+57.8=48.2 | | 3x=24,9 | | 35=2x+6 | | 4x-14=3x+1 | | x+9=5x=11 | | 3(p+8)+6= | | (x2)2−4x2−5=0 | | −1.2x+57.8=48.2 | | 1/2a+5=13 | | 5n+6-2n=24 | | 90=x+101 |

Equations solver categories